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Abstract
Critical slowing down associated with the iterative solvers close to the critical
point often hinders large-scale numerical simulation of fracture using discrete
lattice networks. This paper presents a block-circulant preconditioner for
iterative solvers for the simulation of progressive fracture in disordered,
quasi-brittle materials using large discrete lattice networks. The average
computational cost of the present algorithm per iteration is O(rs log s) + delops,
where the stiffness matrix A is partitioned into r × r blocks such that each block
is an s × s matrix, and delops represents the operational count associated with
solving a block-diagonal matrix with r × r dense matrix blocks. This algorithm
using the block-circulant preconditioner is faster than the Fourier accelerated
preconditioned conjugate gradient algorithm, and alleviates the critical slowing
down that is especially severe close to the critical point. Numerical results using
random resistor networks substantiate the efficiency of the present algorithm.

PACS numbers: 62.20.Mk, 46.50.+a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Progressive damage evolution leading to the failure of disordered quasi-brittle materials has
been studied extensively using various types of discrete lattice models [1–8]. Numerical
simulation of large lattice networks has often been hampered due to critical slowing down
associated with the iterative solvers as the lattice system approaches macroscopic fracture.
The authors have developed a multiple-rank sparse Cholesky update algorithm based on direct
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solvers for simulating fracture using discrete lattice systems [9]. Using the algorithm presented
in [9], the authors have reported numerical simulation results for large 2D lattice systems (e.g.,
L = 512), which to the authors knowledge, was so far the largest lattice system used in
studying damage evolution using discrete lattice systems. Although the sparse direct solvers
presented in [9] are superior to iterative solvers in two-dimensional lattice systems, for 3D
lattice systems, the memory demands brought about by the amount of fill-in during sparse
Cholesky factorization favour iterative solvers. Hence, iterative solvers are in common use for
large-scale 3D lattice simulations. As the lattice system gets closer to macroscopic fracture, the
condition number of the system of linear equations increases, thereby increasing the number
of iterations required to attain a fixed accuracy. This becomes particularly significant for
large lattices. Fourier accelerated preconditioned conjugate gradient (PCG) iterative solvers
[10–12] have been used in the past to alleviate the critical slowing down. However, the Fourier
acceleration technique based on ensemble averaged circulant preconditioner is not effective
when fracture simulation is performed using central-force and bond-bending lattice models
[11]. The main focus of the current paper is on developing an efficient algorithm based on
iterative solvers for large-scale 3D lattice simulations, and the block-circulant preconditioner
presented in the current paper is an effort towards this goal.

Since the Laplacian operator on a discrete lattice network results in the block structure of
the stiffness matrix, we propose to use block-circulant matrices [13, 14] as preconditioners to
the stiffness matrix for solving this class of problems. The proposed algorithm is benchmarked
against the commonly used incomplete LU and Cholesky preconditioners [15], and the optimal
[14, 16–18] and superoptimal [14, 19] circulant preconditioners to the Laplacian operator
(Kirchhoff equations). The advantage of using the circulant preconditioners is that they
can be diagonalized by discrete Fourier matrices, and hence the inversion of ndof × ndof

circulant matrix can be done in O(ndof log ndof ) operations by using FFTs of size ndof . In
addition, since the convergence rate of the PCG method depends on the condition number of
the preconditioned system, it is possible to choose a circulant preconditioner that minimizes
the condition number of the preconditioned system [14, 19]. Furthermore, these circulant
preconditioned systems exhibit favourable clustering of eigenvalues. In general, the more
clustered the eigenvalues are, the faster the convergence rate is. Another important property
of these circulant preconditioners proposed in this study is that they are positive definite if the
stiffness matrix itself is positive definite. In this regard, we note that the Fourier accelerated
PCG presented in [10–12] is not optimal in the sense described in [14, 16–18], and hence is
expected to take more number of CG iterations compared with the optimal and superoptimal
circulant preconditioners.

In this paper, we analyse a random threshold model problem, where a lattice consists
of fuses having the same conductance, but the bond breaking thresholds, ic, are based on a
broad (uniform) probability distribution, which is constant between 0 and 1. This relatively
simple model has been extensively used in the literature for simulating the fracture and
progressive damage evolution in brittle materials, and provides a meaningful benchmark for
comparing different algorithms. A broad threshold distribution represents large disorder and
exhibits diffusive damage leading to progressive localization, whereas a very narrow threshold
distribution exhibits brittle failure in which a single crack propagation causes material failure.
Periodic boundary conditions are imposed in the horizontal direction to simulate an infinite
system and a constant voltage difference (displacement) is applied between the top and the
bottom of lattice system. The simulation is initiated with a triangular lattice of intact fuses
of size L × L, in which disorder is introduced through random breaking thresholds. The
voltage V across the lattice system is increased until a fuse (bond breaking) burns out.
The burning of a fuse occurs whenever the electrical current (stress) in the fuse (bond)
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exceeds the breaking threshold current (stress) value of the fuse. The current is redistributed
instantaneously after a fuse is burnt. The voltage is then gradually increased until a second
fuse is burnt, and the process is repeated. Each time a fuse is removed, the electrical current is
redistributed and hence it is necessary to re-solve Kirchhoff equations to determine the current
flowing in the remaining bonds of the lattice. This step is essential for determining the fuse
that is going to burn up under the redistributed currents. Therefore, numerical simulations
leading to final breaking of lattice system network are very time consuming especially with
increasing lattice system size. Consequently, an efficient preconditioner to the Laplacian
operator on fractal networks that mitigates the effect of critical slowing down as the lattice
system approaches macroscopic fracture is of utmost importance in the numerical simulation
of material breakdown.

In the following, we present point-circulant and block-circulant preconditioners for
solving the linear system of equations that arise during the numerical simulation of progressive
fracture in brittle materials using the random threshold model.

2. Circulant preconditioners for CG iterative solvers

Consider the ndof × ndof stiffness matrix A. The optimal circulant preconditioner c(A) [16] is
defined as the minimizer of ‖C − A‖F over all ndof × ndof circulant matrices C. In the above
description, ‖ · ‖F denotes the Frobenius norm [15], and the matrix c(A) is called an optimal
circulant preconditioner because it minimizes the norm ‖C − A‖F . The optimal circulant
preconditioner c(A) is uniquely determined by A, and is given by

c(A) = F∗δ(FAF∗)F (1)

where F denotes the discrete Fourier matrix, δ (A) denotes the diagonal matrix whose diagonal
is equal to the diagonal of the matrix A and ∗ denotes the adjoint (i.e. conjugate transpose). It
should be noted that the diagonal elements of the matrix δ (FAF∗) represent the eigenvalues
of the matrix c(A) and can be obtained in O(ndof log ndof ) operations by taking the FFT of
the first column of c(A). The first column vector of Chan’s optimal circulant preconditioner
matrix that minimizes the norm ‖C − A‖F is given by

ci = 1

ndof

ndof∑
j=1

aj,(j−i+1) modndof . (2)

The above formula can be interpreted simply as follows: the element ci is simply the arithmetic
average of those diagonal elements of A extended to length ndof by wrapping around and
containing the element ai,1. If the matrix A is a Hermitian matrix, then the eigenvalues of
c(A) are bounded from below and above by

λmin(A) � λmin(c(A)) � λmax(c(A)) � λmax(A) (3)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues, respectively. Based
on the above result, if the matrix A is positive definite, then the circulant preconditioner c(A)

is also positive definite. In particular, if the circulant preconditioner is such that the spectra of
the preconditioned system are clustered around 1, then the convergence of the solution will be
fast. The superoptimal circulant preconditioner t (A) [19] is based on the idea of minimizing
the norm ‖I − C−1A‖F over all nonsingular circulant matrices C. In the above description,
t (A) is superoptimal in the sense that it minimizes ‖I − C−1A‖F , and is equal to

t (A) = c(AA∗)c(A)−1. (4)

The preconditioner obtained by equation (4) is also positive definite if the matrix A itself
is positive definite. Although the preconditioner t (A) is obtained by minimizing the norm
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‖I−C−1A‖F , the asymptotic convergence of the preconditioned system is the same as c(A) for
large ndof system. Hence, in this study, we limit ourselves to the investigation of preconditioned
systems using c(A) given by equation (2). The computational cost associated with the solution
of preconditioned system c(A)z = r is the initialization cost of nnz(A) for setting the first
column of c(A) using equation (2) during the first iteration, and O(ndof log ndof ) during every
iteration step during every iteration step, where nnz(A).

In order to distinguish the block-circulant preconditioners that follow from the above
described circulant preconditioners, we refer henceforth to the above preconditioners as point-
circulant preconditioners.

2.1. Block-circulant preconditioners

Let the matrix A be partitioned into r × r blocks such that each block is an s × s matrix. That
is, ndof = rs, and

A =




A1,1 A1,2 · · · A1,r

A2,1 A2,2 · · · A2,r

...
...

. . .
...

Ar,1 Ar,2 · · · Ar,r


 . (5)

Although the point-circulant preconditioner c(A) defined by equation (2) can be used as a
preconditioner, in general, the block structure is not restored by using c(A) as a preconditioner.
In contrast, the circulant-block preconditioners obtained by using circulant approximations
for each of the blocks restore the block structure of A. The circulant-block preconditioner of
A can be expressed as

cB(A) =




c(A1,1) c(A1,2) · · · c(A1,r )

c(A2,1) c(A2,2) · · · c(A2,r )

...
...

. . .
...

c(Ar,1) c(Ar,2) · · · c(Ar,r )


 . (6)

The circulant-block preconditioner defined by equation (6) is the minimizer of ‖C−A‖F over
all matrices C that are r × r block matrices with s × s circulant blocks. The spectral properties
as given by equation (3) for point-circulant preconditioners also extend to the circulant-block
preconditioners [13, 14]. That is,

λmin(A) � λmin(cB(A)) � λmax(cB(A)) � λmax(A). (7)

In particular, if the matrix A is positive definite, then the block preconditioner cB(A) is also
positive definite.

The computational cost associated with the circulant-block preconditioners can be
estimated as follows. Since the stiffness matrix A is real symmetric for the type of problems
considered in this study, in the following, we assume block symmetric structure for A, i.e.,
Aj,i = At

i,j . In forming the circulant-block preconditioner given by equation (6), it is necessary
to obtain point-circulant preconditioners for each of the r × r block matrices of order s. Point-
circulant approximation for each of the s × s blocks requires O(s log s) operations. This
cost is in addition to the cost associated in forming the first column vectors (equation (2)) for
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each of the c(Ai,j ) blocks, which is given by nnz(A) operations. Since there are (r(r + 1))/2
blocks, we need O(r2s log s) operations to form

∆ = (I ⊗ F)cB(A)(I ⊗ F∗) =




δ(FA1,1F∗) δ(FA1,2F∗) · · · δ(FA1,rF∗)
δ(FA2,1F∗) δ(FA2,2F∗) · · · δ(FA2,rF∗)

...
...

. . .
...

δ(FAr,1F∗) δ(FAr,2F∗) · · · δ(FAr,rF∗)


 . (8)

In the above equation, ⊗ refers to the Kronecker tensor product and I is an r × r identity
matrix. In order to solve the preconditioned equation cB(A)z = r, equation (8) is permuted to
obtain a block-diagonal matrix of the form

∆̃ = P∗∆P =



∆̃1,1 0 · · · 0

0 ∆̃2,2 · · · 0
...

...
. . .

...

0 0 · · · ∆̃s,s


 (9)

where P is the permutation matrix such that

[∆̃k,k]ij = [δ(FAi,j F∗)]kk ∀ 1 � i, j � r 1 � k � s. (10)

During each iteration step, in order to solve the preconditioned system cB(A)z = r, it is
necessary to invert the block-diagonal matrix ∆̃. This task can be performed by first factorizing
each of the ∆̃k,k blocks during the first iteration step, and then subsequently using these factored
matrices to do the backsolve operations. Hence, without considering the first factorizing cost
of each of the block diagonals, during each iteration step, the number of operations involving
the inversion of ∆̃ is

delops = O

(
s∑

k=1

∣∣L∆̃k,k

∣∣) (11)

where L∆̃k,k
denotes the number of non-zeros in the Cholesky factorization of the matrix

∆̃k,k . Therefore, the system cB(A)z = r can be solved in O(rs log s) + delops operations per
iteration step. Thus, we conclude that for the circulant-block preconditioner, the initialization
cost is nnz(A) + O(r2s log s) plus the cost associated with the factorization of each of the
diagonal blocks ∆̃k,k during the first iteration, and O(rs log s) + delops during every iteration
step.

Although from operational cost per iteration point of view, the point-circulant
preconditioner may prove advantageous for some problems, it is not clear whether point-
circulant or circulant-block is closest to the matrix A in terms of the number of CG iterations
necessary for convergence. Hence, we investigate both point-circulant and circulant-block
preconditioners in obtaining the solution of the linear system Ax = b using iterative techniques.
In addition, we also employ the commonly used point and block versions of the incomplete
LU preconditioners to solve the linear system Ax = b.

Remark 1. In the case of 2D discrete lattice network with periodic boundary conditions in
the horizontal direction and a constant voltage difference between the top and the bottom
of the lattice network, the matrix A is a block tri-diagonal real symmetric matrix. Under
these circumstances, the initialization cost is nnz(A) + O(rs log s). Since each of the
diagonal blocks ∆̃k,k is a tri-diagonal matrix, during each iteration step, the solution involving
the inversion of ∆̃ can be obtained in O(rs) operations. Thus, the cost per iteration is
O(rs log s)+O(sr) = O(rs log s) operations. The total computational cost involved in using
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Table 1. Block-circulant PCG: 2D triangular lattice.

Size CPU (s) Wall (s) Iterations Nconfig

32 10.00 10.68 11 597 20 000
64 135.9 139.8 41 207 1 600

128 2 818 2 846 147 510 192
256 94 717 96 500 32

Table 2. Optimal circulant PCG: 2D triangular lattice.

Size CPU (s) Wall (s) Iterations Nconfig

32 11.66 12.26 25 469 20 000
64 173.6 178.8 120 570 1600

128 7 473 7 725 622 140 128

Table 3. Un-preconditioned CG: 2D triangular lattice.

Size CPU (s) Wall (s) Iterations Nconfig

32 7.667 8.016 66 254 20 000
64 203.5 205.7 405 510 1 600

the circulant-block preconditioner for a symmetric block tri-diagonal matrix is the initialization
cost of nnz(A)+O(rs log s), and O(rs log s) operations per iteration step. This is significantly
less than the computational cost involved in using a generic circulant-block preconditioner. It
should be noted that the block tri-diagonal structure of A does not change the computational
cost associated with using a point-circulant preconditioner to solve the linear system Ax = b.

3. Numerical simulation results

In the following, we benchmark the proposed block-circulant preconditioner against the
optimal [14, 16–18] circulant preconditioner used for the Laplacian operator (Kirchhoff
equations). The main purpose behind the 2D lattice simulations presented below is to
demonstrate the efficiency of block-circulant preconditioner over the optimal circulant
preconditioner for the iterative solvers. Once again, we note that the type of ensemble-
averaged circulant preconditioner presented in [10–12] is not optimal in the sense described
in [14, 16–18], and hence is expected to take more number of CG iterations compared with
the optimal circulant preconditioners. In the case of 2D lattice systems, we also present the
simulation results using solver type A of [9] based on sparse direct solvers. As noted earlier,
the sparse direct solvers presented in [9] are superior to the iterative solvers for 2D lattice
systems, even with the block-circulant preconditioner presented in the current paper. However,
the main advantage of the block-circulant preconditioner using iterative solvers is in the case
of simulation of 3D lattice systems, where the usage of sparse direct solvers is limited by the
(random access) memory constraints.

The numerical results presented in tables 1–5 (for 2D lattices) and 7–10 (for 3D lattices)
are performed on a single processor of Cheetah (27 Regatta nodes with thirty-two 1.3 GHz
Power4 processors each, http://www.ccs.ornl.gov). However, the numerical simulation results
presented in tables 6 (for 2D lattices) and 11 (for 3D lattices) are performed on a single
processor of Eagle (184 nodes with four 375 MHz Power3-II processors) supercomputer at
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Table 4. Incomplete cholesky PCG: 2D triangular lattice.

Size CPU (s) Wall (s) Iterations Nconfig

32 2.831 3.008 5 857 20 000
64 62.15 65.61 29 496 4 000

128 1 391 1 430 148 170 320

Table 5. Computational cost associated with solver type A of [9].

Size CPU (s) Wall (s) Nconfig

32 0.592 0.687 20 000
64 10.72 11.26 4 000

128 212.2 214.9 800
256 5 647 5 662 96
512 93 779 96515 16

Table 6. Number of broken bonds at peak and at failure.

Triangular

L Nconfig np (mean) np (std) nf (mean) nf (std)

4 50 000 13 3 19 3
8 50 000 41 8 54 7

16 50 000 134 19 168 18
24 50 000 276 32 335 31
32 50 000 465 48 554 46
64 50 000 1 662 130 1 911 121

128 12 000 6 068 386 6 766 349
256 1 200 22 572 1 151 24 474 1 046

the Oak Ridge National Laboratory to run simulations simultaneously on more number of
processors. In all the iterative schemes presented below, we employ a residual tolerance of
ε = 10−12 for convergence of the iterations. Tables 1 and 2 present the cpu and wall-clock
times taken on a single processor of Cheetah for one configuration (simulation) using the
block-circulant and the optimal circulant precondioned CG iterative solvers, respectively. In
the case of two-dimensional block-circulant PCG, we partition the matrix A into L × L blocks
such that each block is a (L + 1) × (L + 1) matrix. For comparison purposes, we also present
in tables 3 and 4, the cpu and wall-clock times taken by un-preconditioned and incomplete
Cholesky preconditioned CG solvers. Table 5 presents the performance of the sparse direct
solver (Solver Type A) reported in [9]. As discussed earlier, for 2D lattice systems, the sparse
direct solvers and the incomplete Cholesky preconditioner are clearly superior to the block-
circulant preconditioned CG iterative solver. However, this advantage of direct solvers (or
the preconditioners such as incomplete Cholesky based on direct solvers) vanishes for large
3D lattice systems due to the amount of fill-in during Cholesky factorization. In tables 1–5,
Nconfig indicates the number of configurations over which ensemble averaging of the numerical
results is performed, and the number of iterations denote the average number of total iterations
taken to break one intact lattice configuration until it falls apart. For some iterative solvers, the
simulations for larger lattice systems were not performed either because they were expected
to take larger cpu times or the numerical results do not influence the conclusions drawn in
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Figure 1. Snapshots of damage in a typical cubic lattice system of size L = 48. Number of
broken bonds at the peak load and at failure are 48904 and 54744, respectively. (a)–(i) represent
the snapshots of damage after breaking nb number of bonds. The colouring scheme is such that
in each snapshot, the bonds broken in the early stages are coloured blue, then green, followed by
yellow, and finally the last stage of broken bonds are coloured red. (a) nb = 20 000 (b) nb = 40 000
(c) nb = 48 904 (peak load) (d) nb = 51 000 (e) nb = 52 500 ( f ) nb = 53 500 (g) nb = 54 000
(h) nb = 54 500 (i) nb = 54 744 (failure).

this study. In table 6, we present the average number of bonds broken at the peak load and at
failure per lattice (triangular) configuration. It should also be noted that in table 6, we were
able to perform ensemble averaging over many number of configurations because we were
able to run these simulations simultaneously on many number of Eagle 375 MHz Power3-II
processors.

In addition to the above presented simulations on two-dimensional (2D) triangular lattices,
we have also carried out simulations on three-dimensional (3D) cubic lattice networks to
investigate the efficiency of block-circulant PCG solvers in 3D simulations. Figure 1 presents
the snapshots of progressive damage evolution for the case of a broadly distributed random



An efficient block-circulant preconditioner for simulating fracture using large fuse networks 2101

Figure 2. Spanning cluster in a typical cubic lattice system of size L = 48. The colouring scheme
is such that the bonds broken in the early stages are coloured blue, then green, followed by yellow,
and finally the last stage of broken bonds are coloured red.

Table 7. Block-circulant PCG: 3D cubic lattice.

Size CPU (s) Wall (s) Iterations Nconfig

10 16.54 16.99 16 168 40 000
16 304.6 308.5 58 756 1 920
24 2 154 2 216 180 204 256
32 12 716 12 937 403 459 128
48 130 522 133 063 1253 331 32

Table 8. Optimal circulant PCG: 3D cubic lattice.

Size CPU (s) Wall (s) Iterations Nconfig

10 15.71 16.10 27 799 40 000
16 386.6 391.1 121 431 1 920
24 2 488 2 548 446 831 256
32 20 127 20 380 1142 861 32
48 233 887 237 571 4335 720 32

threshold model problem in a cubic lattice system of size L = 48. The spanning cluster is
shown in figure 2. Tables 7–10 present the cpu and wall-clock times taken on a single processor
of Cheetah for simulating one configuration using the block-circulant, optimal circulant, un-
preconditioned and the incomplete Cholesky iterative solvers, respectively. It should be noted
that for large 3D lattice systems (e.g., L = 32), the performance of incomplete Cholesky
preconditioner (see table 10) is similar to that of the block-circulant preconditioner (see
table 7), even though the performance of incomplete Cholesky preconditioner is far more
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Table 9. Un-preconditioned CG: 3D cubic lattice.

Size CPU (s) Wall (s) Iterations Nconfig

10 5.962 6.250 48 417 40 000
16 119.4 123.0 246 072 3 840
24 1 923 1 982 1030 158 256
32 16 008 16 206 2868 193 64

Table 10. Incomplete cholesky PCG: 3D cubic lattice.

Size CPU (s) Wall (s) Iterations Nconfig

10 5.027 5.262 8 236 40 000
16 118.1 122.3 42 517 3 840
24 1 659 1 705 152 800 512
32 12 091 12 366 422 113 64

Table 11. Number of broken bonds at peak and at failure.

Cubic

L Nconfig np (mean) np (std) nf (mean) nf (std)

10 40 000 563 57 726 59
16 3 840 2 108 147 2 572 152
24 512 6 692 354 7 882 337
32 128 15 329 705 17 691 649
48 32 49 495 1 582 55 768 1 523

superior in the case of 2D lattice simulations. The memory limitations severely restricted
the use of sparse direct solvers for simulating large 3D lattice systems, and hence the results
corresponding to the direct solver for 3D lattice systems are not presented. In the case of
block circulant PCG, we once again partition the matrix A into L × L blocks of size
(L + 1)2 × (L + 1)2 matrices. It should be noted that in order to get maximum efficiency using
the block-circulant PCG solver, it is possible to further partition each of the (L+ 1)2 × (L+ 1)2

matrix blocks into (L + 1) × (L + 1) blocks of matrices of size (L + 1) × (L + 1). However,
the results presented in this study do not perform such nested block-circulant preconditioning.
Table 11 presents the average number of bonds broken at the peak load and at failure per lattice
configuration.

4. Conclusions

The main focus of the current paper is on developing an efficient algorithm based on iterative
solvers for simulating large 3D fuse networks. Although the sparse direct solvers presented
in [9] achieve superior performance over iterative solvers in 2D lattice systems, the available
random access memory poses a severe constraint over the usage of sparse direct solvers for
large 3D lattice systems due to the amount of fill-in during sparse Cholesky factorization.
In this regard, the block-circulant preconditioner presented in the current paper is an effort
towards efficiently solving large 3D fuse networks.
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Based on the numerical simulation results presented in tables 1–5 (2D) and tables 7–10
(3D) for random threshold fuse model networks, it is clear that the block-circulant
preconditioned CG is superior to the optimal circulant preconditioned PCG solver, which
in turn is superior to the Fourier accelerated PCG solvers. Furthermore, in the case of
large 3D lattice systems, the block-circulant preconditioner exhibits superior performance (for
system sizes L > 32) over the sparse direct solvers and the related incomplete Cholesky
preconditioned CG solvers.

In addition, during the CG iterative solution, the preconditioned system using the block-
circulant preconditioner is trivially parallel, and hence a parallel implementation of the block-
circulant precondioner can be employed to further speed up the solution of large 3D lattice
systems. This allowed us to consider larger 3D lattice simulations, which will be a subject of
future publication.
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